“Superstarch” and the Endurance Cyclist

cyclist with appleA comment from a reader led me to take a look at a slick website hawking a product called Generation Ucan that is marketed as delivering several “scientifically validated” benefits to people engaged in athletic activity.  From the serious beginner to the most highly-paid professional, athletes are notorious for their susceptibility to being taken in by products that claim to improve performance.  The Generation Ucan website has several of the characteristics that are often associated with nutrition scams that make fabulous claims while trying to sell untested or poorly tested junk to gullible people so I decided to take a closer look.

What is it?

waxy-maize-starch_2 (2)Generation Ucan is hydrothermally modified waxy maize starch.  The starch is processed under conditions of higher than normal moisture (hydro) and heat (thermal) which changes the chemical properties of the starch molecules.   One effect of this treatment that is of interest to endurance athletes is that the carbohydrates in hydrothermally modified starch have a low glycemic index.  Generation Ucan calls HMS “superstarch” which is such an obvious and ridiculous marketing ploy that I’ll avoid it.  What they’re selling is hydrothermally modified starch or HMS.

sciencequizlogoThe Generation Ucan website is filled with phrases like “lab tested”, “scientifically proven”, “our science”, and “proof/validation”.  First of all, reputable research scientists virtually never talk about “proof” like this.  We talk about the extent to which the experimental evidence supports or fails to support the conclusion.  The marketing-hype alarm goes off big-time when “science” and “proof” occur together in product marketing.

What scientific evidence does Generation Ucan actually provide?

The website has links to a couple of white papers that talk about research that supports their claims for their HMS.  White papers are documents produced by a company with the aim of selling a product.  Generation Ucan’s white papers reference “internal studies” as evidence that HMS is wonderful.  As evidence to support their claims about HMS, these internal studies are worthless.  Not enough information is given to determine whether the research was carried out rigorously and properly.  The internal studies may provide good evidence or they may not.  There’s no way to know one way or the other.  However, if the science was good, you would expect it would have been published in a top-rated peer-reviewed journal.  There is no indication on the website that these internal studies were submitted to a reputable journal or survived a rigorous peer-review process.  Basically, the white papers contain a lot of unsubstantiated claims tricked up to look like science.

The Generation Ucan website also provides a prominent link to an article in Men’s Health Magazine that promotes the product.  Men’s Health Magazine?  Lol, really?

Buried in the science section of the website they have a link to downloads.  Follow that link and what you mainly find are sales kits.  Sales kits in the scientific evidence section?  There are seven of these sales kits.  There are also two links to their own white papers, and one link to an article in the journal Nutrition about HMS.  Nutrition is a peer-reviewed journal and this article is the only reliable scientific evidence that I found on the Generation Ucan website.

cyclist in labThe article in Nutrition is the real deal although it should be noted that Generation Ucan funded the research project that is reported in the article.  What does it report?  Nine male cyclists engaged in a 150 minute cycling session at 70% VO2(max) – that’s fairly intense – followed by a 100% VO2 (max) time-trial to exhaustion.  Before the exercise session and immediately afterwards the cyclists were given either HMS or maltodextrin.  Maltodextrin is a sweetener often used in candy, soda and many other products.  HMS and maltodextrin are both sources of carbohydrates.

Note that they didn’t call their HMS “superstarch” when they submitted the research for peer review.   If they had, they would have been laughed out of the room.

Ucan insulin dataThe study found that the HMS group had a lower initial insulin spike than the maltodextrin group.  They also found that the HMS group showed a higher level of fat breakdown during the recovery period.  There were no reliable performance differences between the HMS and maltodextrin groups during either the 150 minute exercise period or the time-trial to exhaustion that followed.  There was also no reliable difference between the two groups in the level of fat breakdown during exercise.

The authors of the article note that the increase in fat breakdown during the recovery period after exercise was probably due to the HMS that was given after the exercise period.  Their research doesn’t test this hypothesis but it is plausible given what is known about the effects of HMS and the relationship between insulin and fat burning.   Insulin is prominently involved in the regulation of fat oxidation.  Lower levels of insulin correspond to higher rates of fat burning and vice versa. The study in Nutrition provides good evidence that HMS reduces insulin and reduced insulin typically produces higher levels of fat oxidation.

Keep in mind that this study in Nutrition is the only reliable scientific evidence that is given on a website that heavily stresses the scientific basis for their claims about how wonderful their product is for athletes.  While this isn’t much, it’s more than you often get on websites that sell wonder foods for sports nutrition.  There is some real science here.  The study provided good evidence that HMS reduces insulin levels.  This information could be of interest to people who are looking to lose weight because reduced insulin levels correspond to higher levels of fat burning after exercise.  It’s worth repeating that the study showed no differences in performance between those who exercised after ingesting HMS and those who ingested maltodextrin.

What claims does Generation Ucan make about their product based on this scientific evidence?

snake-oil-salesman-bigThey claim that their HMS produces “optimized performance”, “sustained energy”, “enhanced fat burn”, “speedier recovery” and “no gastric distress”.  The claim about enhanced fat burn is supported by the evidence in the Nutrition article.  The scientific evidence they reference on the website has nothing at all to do with sustained energy, speedier recovery or levels of gastric distress.  As far as “lab tested” or “scientifically proven” these claims are completely unsupported by the scientific evidence the Generation Ucan people provide.  They give you no good reason to believe HMS provides any of these benefits.

The claim about optimized performance is outrageous.  I expect many people looking at the Generation Ucan website uncritically will understand this as meaning that performance is better if you use their HMS than if you use other carb sources during exercise.  The article in Nutrition that is offered as the only reliable scientific evidence given on the website flatly contradicts this interpretation.   There was no difference in performance (or fat burning during exercise) between the HMS group and the maltodextrin group in the study.

lawyerI have no doubt that company lawyers can parse the “optimized performance” statement to mean that Generation Ucan’s HMS produces optimized performance in the sense that it matches the “optimal” performance levels expected after ingesting carbs from candy, soda or energy drinks.  When you have to rely on lawyers to weasel out of charges of false advertising, there’s clearly something wrong.  Anyone with a lick of common sense can see that, at best, the “optimized performance” claim is highly misleading.  At worst, it is pure bullshit designed to sucker you into buying their product.

What’s the take-home message about Generation Ucan’s HMS?  The product is likely to lower insulin levels.  This can be useful to people who want to burn fat.  If this is one of your goals, taking Generation Ucan’s HMS immediately after exercise may be useful.  If you are diabetic, don’t go near this product without consulting your doctor.  As far as supporting performance during exercise, their HMS is unlikely to be any better, or any worse, than many other sources of carbohydrates you can eat or drink on the bike.

What’s the take home message about the Generation Ucan company based on how they present themselves on their website?  Either the people who are trying to convince you to buy their HMS have the scientific training to tell the difference between good science and junk science or they don’t.  If they do, then the science heavy promotion on the Generation Ucan website is purposefully designed to mislead you into buying their product based on unsubstantiated claims that they figure you are either too ignorant or too stupid to recognize for what they are.  If they don’t, what are they doing marketing their product with a website that goes heavy on the science?  In either case, why should you believe anything they have to say?

Cycling Nutrition: The Value of the Glycemic Index for Cyclists

idiots guide

Information about the glycemic index and many other topics can be found in Nutrition for Cyclists: Eating and Drinking Before, During and After the Ride which can be purchased on Amazon.com.  For information about the book and how it relates to what I’ve posted to Tuned In To Cycling, please check out this post.

The diet industry is big business; in the US it is estimated that people spend in the neighborhood of $35 billion dollars a year on diet-related products.  (To make that number more comprehensible, if you make $50,000 a year Americans spend your yearly salary on diet products approximately every 80 seconds.  24, 7, 365.)  A large part of this industry relies on consumer ignorance and gullibility to enable the promotion and sale of one fad diet idea after another.  One of the ideas heavily promoted in the diet industry is the glycemic index.

Is the glycemic index useful? Yes.  Is it all the diet industry makes it out to be?  Not even close.  For our purposes here, is it useful to cyclists?  I think the best answer here is – marginally.

First of all, what is it?  The glycemic index is an indicator of how long it takes food to be converted to glucose in the blood.  Glucose is the fuel that muscles burn when they are working and on-the-bike cycling nutrition and performance is largely about glucose production and consumption.  Having an idea of how long it will take to get the food you eat while you ride converted into blood glucose has the potential to be very useful.

Will the glycemic index tell you how long it takes for the Powerbar or raisins you ate to be converted to blood glucose in seconds, minutes and hours?  No.  The glycemic index compares the time it takes for a particular food to be converted to glucose in the blood to the time it takes for pure glucose ingested orally to appear as glucose in the blood.  Glucose is arbitrarily assigned a glycemic index value of 100 to serve as a basis for comparison.  Particular foods are then given a glycemic index value, typically less than 100, based on how long they take to be converted to blood glucose in comparison to pure glucose.  A high glycemic index indicates a food is rapidly converted to blood glucose; a low glycemic index value means it takes a relatively longer time for that food to be converted to blood glucose.  The glycemic index doesn’t tell you how long it takes to get blood glucose out of food, it gives you a rough idea which foods are converted to blood glucose more quickly than others.

eating on bikeThis sounds like it should be of great use to the cyclist.  You’re burning glucose constantly on the bike, you need more, you’re eating to get more, the glycemic index will tell you what to eat to get that glucose as quickly as possible.

It’s all good, right? Not really. Why not?

The glycemic index of most food varies with so many factors that the rough idea the glycemic index gives you of which foods are converted into blood glucose faster can be very rough indeed.  Here are some examples.

  1. For many foods, glycemic index varies as a function of how the food was prepared (pasta boiled for 10 minutes has a different glycemic index than pasta boiled for 15 minutes), when it is eaten relative to when it was cooked (potatoes often have a higher glycemic index when eaten after cooking than they do if refrigerated  and then reheated and eaten the next day), how ripe the food is when eaten (generally, the glycemic index of fruit increases as the fruit ripens), or which variant of the food type you are eating (different types of raisins have different glycemic indices).
  2. Glycemic index for a particular food varies depending on what is eaten along with that food.  Fat, protein or fiber eaten along with a particular food usually results in a lower overall glycemic index.  For example, you’ll usually get faster blood glucose from raisins eaten alone than the raisins in a cookie.
  3. Different people will have a different glycemic index for the same food because individuals differ in how efficiently they digest carbohydrates.  In addition, the same person may have a different glycemic index for the same food when that food is eaten at different times of the day.
rough categories

The glycemic index values that are used to define the categories in this image are rough guides.

Considering all of these factors, I think the glycemic index can be modestly useful to the cyclist planning what to eat during a ride.  There are many glycemic index charts for different foods that can be found on the internet.  The specific numbers given in these charts are best thought of as rough estimates.  For the cyclist it’s probably most useful to consider glycemic index in terms of three rough categories: High, medium and low glycemic index foods.  High glycemic index foods will probably provide needed glucose throughout the ride.  On long rides of two hours or more, low glycemic index foods can produce needed glucose later in the ride if the food is eaten early in the ride.  As you get closer to the end of the ride, higher glycemic index foods are more likely to be beneficial while you’re still on the bike.

WARNING:  The nutritional needs of a person engaged in 60 to 90 minutes of moderate to intense exercise or a long ride lasting more than 2 hours are very different from the nutritional needs of that same person going about their daily activities.  High glycemic foods can be very useful while you’re on the bike.  A steady diet of high glycemic foods when you’re not engaged in endurance exercise has been shown to be related to various health problems such as obesity (and all of its related problems), diabetes and, at least in animal studies, a shortened life span.  High glycemic foods eaten while you’re riding will generally help you.  A day-in, day-out diet of high glycemic foods when you’re not exercising will generally hurt you.